Online Signature Verification: a Robust Approach for Persian Signatures
نویسندگان
چکیده
In this paper, the specific trait of Persian signatures is applied to signature verification. Efficient features, which can discriminate among Persian signatures, are investigated in this approach. Persian signatures, in comparison with other languages signatures, have more curvature and end in a specific style. An experiment has been designed to determine the function indicating the most robust features of Persian signatures. To improve the performance of verification, a combination of shape based and dynamic extracted features is applied to Persian signature verification. To classify these signatures, Support Vector Machine (SVM) is applied. The proposed method is examined on two common Persian datasets, the new proposed Persian dataset in this paper (Noshirvani Dynamic Signature Dataset) and an international dataset (SVC2004). For three Persian datasets EER value are equal to 3, 3.93, 4.79, while for SVC2004 the EER value is 4.43. These experiments led to identification of new features combinations that are more robust. The results show the overperformance of these features among all of the previous works on the Persian signature databases; however, it does not reach the best reported results in an international database. This can be deduced that language specific approaches may show better results.
منابع مشابه
Off-Line Persian Signature Identification and Verification Based on Image Registration and Fusion
Signature verification and Identification has great importance for authentication purpose. Persian signatures are different from other signature types because people usually do not use text in it and they draw a shape as their signature, therefore, a different approach should be considered to process such signatures. In this paper, a method for off-line Persian signature identification and veri...
متن کاملCursive Signature Extraction and Verification
This paper presents a new approach for document image decomposition and verification based on connected component analysis and geometric properties of labeled regions. The database contains document images with Persian/Arabic text combined with English text, headlines, ruling lines, trademarks and cursive signatures. In particular, Persian/Arabic signature extraction is investigated using speci...
متن کاملOffline Signature Verification Using Surf Feature Extraction and Neural Networks Approach
In this paper we will evaluate the use of SURF features in handwritten signature verification. For each known writer we will take a sample of three genuine signatures and extract their SURF descriptors. In this paper, off-line signature recognition & verification using neural network is proposed, where the signature is captured and presented to the user in an image format. Signatures are verifi...
متن کاملUse of the Shearlet Transform and Transfer Learning in Offline Handwritten Signature Verification and Recognition
Despite the growing growth of technology, handwritten signature has been selected as the first option between biometrics by users. In this paper, a new methodology for offline handwritten signature verification and recognition based on the Shearlet transform and transfer learning is proposed. Since, a large percentage of handwritten signatures are composed of curves and the performance of a sig...
متن کاملتولید خودکار الگوهای نفوذ جدید با استفاده از طبقهبندهای تک کلاسی و روشهای یادگیری استقرایی
In this paper, we propose an approach for automatic generation of novel intrusion signatures. This approach can be used in the signature-based Network Intrusion Detection Systems (NIDSs) and for the automation of the process of intrusion detection in these systems. In the proposed approach, first, by using several one-class classifiers, the profile of the normal network traffic is established. ...
متن کامل